Insulin responsiveness of glucose transporter 4 in 3T3-L1 cells depends on the presence of sortilin
نویسندگان
چکیده
Insulin-dependent translocation of glucose transporter 4 (Glut4) to the plasma membrane of fat and skeletal muscle cells plays the key role in postprandial clearance of blood glucose. Glut4 represents the major cell-specific component of the insulin-responsive vesicles (IRVs). It is not clear, however, whether the presence of Glut4 in the IRVs is essential for their ability to respond to insulin stimulation. We prepared two lines of 3T3-L1 cells with low and high expression of myc7-Glut4 and studied its translocation to the plasma membrane upon insulin stimulation, using fluorescence-assisted cell sorting and cell surface biotinylation. In undifferentiated 3T3-L1 preadipocytes, translocation of myc7-Glut4 was low regardless of its expression levels. Coexpression of sortilin increased targeting of myc7-Glut4 to the IRVs, and its insulin responsiveness rose to the maximal levels observed in fully differentiated adipocytes. Sortilin ectopically expressed in undifferentiated cells was translocated to the plasma membrane regardless of the presence or absence of myc7-Glut4. AS160/TBC1D4 is expressed at low levels in preadipocytes but is induced in differentiation and provides an additional mechanism for the intracellular retention and insulin-stimulated release of Glut4.
منابع مشابه
The Hot Water Extract of Angelica Gigas Nakai Root Promotes Adipogenic Differentiation via Activation of the Insulin Signaling Pathway in 3T3-L1 Cells
In this study, the effects of the hot water root extract of Angelica gigas Nakai (AGN) on the differentiation of 3T3-L1 preadipocytes and the possible mechanism of glucose transport were investigated. Post-confluent 3T3-L1 cells were differentiated in the presence (up to 400μg/ml) or absence of AGN Oil red O staining showed that AGN extract significantly enhanced adipocyte differentiation in a ...
متن کاملThe luminal Vps10p domain of sortilin plays the predominant role in targeting to insulin-responsive Glut4-containing vesicles.
In fat and skeletal muscle cells, insulin-responsive vesicles, or IRVs, deliver glucose transporter Glut4 and several associated proteins to the plasma membrane in response to hormonal stimulation. Although the protein composition of the IRVs is well studied, the mechanism of their formation is unknown. It is believed, however, that the cytoplasmic tails of the IRV component proteins carry targ...
متن کاملAlternative routes to the cell surface underpin insulin-regulated membrane trafficking of GLUT4
Insulin-stimulated delivery of glucose transporters (GLUT4, also known as SLC2A4) from specialized intracellular GLUT4 storage vesicles (GSVs) to the surface of fat and muscle cells is central to whole-body glucose regulation. This translocation and subsequent internalization of GLUT4 back into intracellular stores transits through numerous small membrane-bound compartments (internal GLUT4-cont...
متن کاملSortilin and retromer mediate retrograde transport of Glut4 in 3T3-L1 adipocytes
Sortilin is a multiligand sorting receptor responsible for the anterograde transport of lysosomal enzymes and substrates. Here we demonstrate that sortilin is also involved in retrograde protein traffic. In cultured 3T3-L1 adipocytes, sortilin together with retromer rescues Glut4 from degradation in lysosomes and retrieves it to the TGN, where insulin--responsive vesicles are formed. Mechanisti...
متن کاملCharacterization of insulin-responsive GLUT4 storage vesicles isolated from 3T3-L1 adipocytes.
Insulin regulates glucose transport in muscle and adipose tissue by triggering the translocation of a facilitative glucose transporter, GLUT4, from an intracellular compartment to the cell surface. It has previously been suggested that GLUT4 is segregated between endosomes, the trans-Golgi network (TGN), and a postendosomal storage compartment. The aim of the present study was to isolate the GL...
متن کامل